黄姑鱼幼鱼肠道菌群的时序演替、关键类群识别及其与养殖水体菌群的相关性分析

TEMPORAL SUCCESSION, KEYSTONE MICROBIOTA IDENTIFICATION, AND CORRELATION ANALYSIS BETWEEN THE INTESTINAL MICROBIOTA OF JUVENILE NIBEA ALBIFLORA AND THE BACTERIAL COMMUNITY IN CULTURE WATER

  • 摘要: 为探究黄姑鱼(Nibea albiflora)幼鱼肠道菌群变化、关键细菌类群及其与养殖水体细菌群落的相关性, 实验以黄姑鱼幼鱼为研究对象, 分别于36、46、66、86和106日龄采集黄姑鱼肠道内容物样品和同时期的养殖水体菌群样品, 利用16S rRNA高通量测序手段, 基于生物信息学方法, 系统解析黄姑鱼幼鱼肠道菌群的组成、结构、时序变化、核心物种及其与生长和养殖水体菌群的相关性。研究结果表明, 不同日龄黄姑鱼肠道菌群中Chao1指数均显著低于同时期养殖水体, 而Shannon指数均显著高于同时期养殖水体; 不同日龄黄姑鱼肠道菌群中Chao1指数呈现先显著升高后逐渐稳定的趋势, 而Shannon指数则呈现相反的趋势; 随着黄姑鱼幼鱼的生长, 养殖水体细菌群落中Chao1指数呈现先下降后上升的显著趋势(P<0.05); 而Shannon指数呈现先上升后显著下降的趋势(P<0.05)。PERMANOVA和ANOSIM分析揭示, 随着黄姑鱼幼鱼的生长, 其肠道菌群结构显著改变(P<0.05), 同时, 幼鱼肠道菌群与同时期的养殖水体细菌群落结构差异显著(P<0.05)。黄姑鱼幼鱼肠道菌群中优势菌门为拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和变形菌门(Proteobacteria), 其中, 拟杆菌门的相对丰度在46日龄后显著升高(P<0.05); 相反, 厚壁菌门和变形菌门的相对丰度在46日龄后显著降低(P<0.05)。在养殖水体中, 优势菌门为拟杆菌门、髌骨菌门(Patescibacteria)和变形菌门; 其中, 拟杆菌门和髌骨菌门的相对丰度呈现显著升高的趋势, 而变形菌门的相对丰度显著下降。在科水平上, 黄姑鱼幼鱼肠道菌群中优势菌科为毛螺菌科(Lachnospiraceae)、Muribaculaceae、普雷沃氏菌科(Prevotellaceae)和链球菌科(Streptococcaceae), 其中毛螺菌科、普雷沃氏菌科和链球菌科的相对丰度在46日龄后显著降低(P<0.05), 而Muribaculaceae的相对丰度显著升高(P<0.05)。在养殖水体中, 优势菌科为Clade_I、黄杆菌科(Flavobacteriaceae)和红杆菌科(Rhodobacteraceae), 其中, Clade_I相对丰度呈现显著下降趋势(P<0.05), 而黄杆菌科和红杆菌科的相对丰度呈现先上升后下降的趋势(P<0.05)。普鲁克分析和溯源分析揭示, 黄姑鱼幼鱼肠道菌群与其养殖水体细菌群落相关性不显著(P<0.05)。生境特异性分析、随机森林分析和Mantel检验等方法相结合, 揭示了与黄姑鱼生长相关的关键细菌类群。此外, 通过黄姑鱼幼鱼肠道菌群的体外分离培养获得2株与其生长相关的潜在原籍益生菌菌株。综上, 本研究揭示了黄姑鱼幼鱼肠道菌群的时序变化、关键细菌类群以及其与养殖水体细菌群落的相关性, 为黄姑鱼幼鱼原籍益生菌的研发提供参考依据。

     

    Abstract: To examine temporal patterns in the intestinal microbiota of juvenile Nibea albiflora, as well as their associations with rearing-water bacterial communities, intestinal contents and corresponding water samples were collected at 36, 46, 66, 86, and 106 days post-hatching. High-throughput 16S rRNA gene sequencing and bioinformatics analyses were used to profile community composition, structure, succession, core taxa, and their relationships with host growth and rearing water microbiota. Across all sampling points, the Chao1 index of intestinal microbiota was significantly lower, while the Shannon index was significantly higher, than those in the rearing water. In the intestine, Chao1 increased initially then stabilized, whereas Shannon declined; in rearing water, Chao1 decreased and then increased, while Shannon showed the opposite trend (P<0.05). PERMANOVA and ANOSIM analyses indicated significant temporal shifts in intestinal communities during growth and persistent differences from rearing-water microbiota (P<0.05). Dominant intestinal phyla were Bacteroidetes, Firmicutes, and Proteobacteria; Bacteroidetes increased significantly after day 46, whereas Firmicutes and Proteobacteria declined. Water microbiota was dominated by Bacteroidetes, Patescibacteria, and Proteobacteria, with the first two phyla increasing and Proteobacteria decreasing over time. At the family level, intestinal communities were enriched in Lachnospiraceae, Muribaculaceae, Prevotellaceae, and Streptococcaceae; the first three families declined significantly after day 46, while Muribaculaceae increased. Water communities were dominated by Clade_I, Flavobacteriaceae, and Rhodobacteraceae, with Clade_I decreasing and the latter two showing a rise-then-fall pattern. Procrustes and source-tracking analyses revealed no significant correlation between intestinal and water communities (P>0.05). Habitat-specificity analysis, random forest modeling, and Mantel tests identified key taxa associated with juvenile growth, and two potentially autochthonous probiotic strains were successfully isolated from the intestine. These findings characterize the temporal dynamics and functional taxa of the intestinal microbiota in juvenile N. albiflora and their relationship to rearing-water communities, providing a foundation for developing host-specific probiotics in this species.

     

/

返回文章
返回