花生四烯酸提高大口黑鲈低溶氧耐受能力的机制

MECHANISM OF ARACHIDONIC ACID ENHANCING HYPOXIA TOLERANCE IN LARGEMOUTH BASS (MICROPTERUS SALMOIDES)

  • 摘要: 为探讨低溶氧胁迫对肝脏花生四烯酸(AA)代谢的影响及添加AA对低氧应激的缓解作用, 研究以大口黑鲈为研究对象, 通过间歇性低氧胁迫和外源补充AA投喂实验, 进行了生理生化、肝脏及鳃组织病理、低氧耐受能力及分子生物学等分析测定。结果表明: 低溶氧胁迫显著增加了大口黑鲈全血的血红蛋白及高铁血红蛋白水平(P<0.05), 诱导鳃组织鳃小片间隙细胞团减少及鳃小片细长等结构性变化, 提高了肝脏血管生成相关基因(vegfammp2、jaggednotch1)表达水平(P<0.05), 时降低了肝脏总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性, 诱导丙二醛(MDA)累积(P<0.05)。低溶氧胁迫也诱导肝脏组织脂质代谢重塑, 表现为饱和脂肪酸水平的升高及多不饱和脂肪酸(PUFA)水平降低, 而AA含量呈现特异性累积特征(P<0.05), 提示其可能涉及低溶氧适应性调控。通过外源补充AA显著降低了大口黑鲈的窒息点(由1.08降至0.5 mg/L), 延长低溶氧耐受时间, 并显著增强了肝脏的T-AOC、SOD、CAT活性(P<0.05); AA补充并没有显著影响低氧诱导的鳃组织结构性变化, 而是表现出更显著的肝脏血管生成水平, 补充外源AA显著提高了大口黑鲈肝脏促血管生成活性物质前列腺素E2 (PGE2)和环氧二十碳三烯酸(EETs)的含量(P<0.05), vegfa、vegfr2、mmp2jaggednotch1基因表达水平上调(P<0.05)。在低溶氧胁迫下, 大口黑鲈通过脂质代谢重塑促进肝脏AA累积, 进而代谢生成PGE2及EETs激活血管生成通路。研究结果揭示了鱼类通过AA代谢调控血管生成应对低溶氧胁迫的新机制, 为水产养殖中营养干预缓解低溶氧应激提供了理论依据。

     

    Abstract: The intensification of aquaculture and climate change have amplified hypoxic stress in aquatic environments, while arachidonic acid (AA) may have the potential to alleviate hypoxic stress. This study investigated the role of AA metabolism in hypoxia adaptation, focusing on hepatic angiogenesis and antioxidant responses in largemouth bass (Micropterus salmoides). Hypoxic stress significantly impaired hepatic antioxidant capacity, evidenced by reduced total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) activities, alongside elevated malondialdehyde (MDA) levels (P<0.05). Hypoxic stress significantly increased whole-blood hemoglobin and methemoglobin levels (P<0.05), induced structural changes in gill tissues such as reduced interlamellar cell masses and elongated lamellae. Concurrently, hypoxia activated hepatic angiogenesis, upregulating vegfa, mmp2, jagged, and notch1 expression (P<0.05), and induced hepatic lipid metabolic reprogramming, characterized by increased saturated fatty acid (SFA) and decreased polyunsaturated fatty acid (PUFA) levels (P<0.05). However, AA exhibited a unique accumulation pattern, suggesting its potential involvement in hypoxia adaptation regulation. Exogenous AA supplementation reduced the asphyxiation point from 1.08 to 0.5 mg/L, prolonged hypoxia survival time, and enhanced hepatic T-AOC, SOD, and CAT activities (P<0.05). While gill structural changes under hypoxia remained unaffected, hepatic angiogenesis was markedly potentiated, as demonstrated by intensified vascular networks and robust upregulation of vegfa, vegfr2, mmp2, jagged, and notch1 (P<0.05). Mechanistically, AA metabolism generated pro-angiogenic mediators, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), which synergistically activated angiogenic pathways (P<0.05). This study demonstrates that largemouth bass employs hypoxia-induced lipid metabolic remodeling to promote hepatic AA accumulation, which is subsequently metabolized into PGE2 and EETs to activate angiogenesis pathways, forming a unique adaptive strategy against hypoxic stress. These findings establish a novel link between AA metabolism and angiogenesis in fish hypoxia adaptation, providing a scientific foundation for dietary interventions to mitigate hypoxic challenges in aquaculture.

     

/

返回文章
返回