基于碳氮稳定同位素技术的赤水河鱼类群落营养结构研究

THE TROPHIC STRUCUTRE OF FISH ASSEMBLAGES IN THE CHISHUI RIVER BASED ON STABLE ISOTOPE ANALYSIS

  • 摘要: 为探究赤水河鱼类食物网特征, 本研究根据2023年丰水期(6月)和枯水期(12月)不同江段采集的鱼类样本的碳、氮稳定同位素值(δ13C和δ15N), 采用MixSIAR模型和SIBER等方法对赤水河鱼类营养级及群落营养结构的时空变化特征等进行了分析。结果表明, 赤水河鱼类的δ13C值和δ15N值变化范围分别为–29.36‰— –15.81‰和6.27‰—16.66‰, 上游和中游段丰水期δ13C值和δ15N值显著高于枯水期(P<0.05), 而下游段季节变化不明显(P>0.05); 鱼类δ13C和δ15N值整体表现出随着河流向下游延伸先增加后降低的趋势, 中游段鱼类δ13C和δ15N值显著高于其他江段(P<0.05)。鱼类营养级范围为1.21—4.46, 丰水期平均营养级显著高于枯水期(P<0.05), 中游段鱼类平均营养级显著高于其他江段(P<0.05)。不同摄食功能群营养级差异显著, 鱼食性鱼类的营养级显著高于其他摄食功能群(P<0.05)。营养结构特征指标分析显示, 赤水河鱼类群落营养结构时空差异显著。时间上, 除下游江段外, 其他江段的氮值范围(NR)、生态位总面积(TA)、平均最邻近距离(MNND)和最邻近距离标准差(SDNND)等指标均表现为丰水期高于枯水期, 表明丰水期鱼类资源利用更为广泛、生态位分化更为明显、食物网结构更为复杂; 空间上, 随着河流向下游延伸, 氮值范围(NR)、碳值范围(CR)和生态位总面积(TA)逐渐增加, 表明群落营养多样性逐渐增加、食物网结构渐趋复杂。研究为理解赤水河生态系统结构与功能提供了重要视角, 同时也为赤水河鱼类多样性保护与生态修复提供了科学依据。

     

    Abstract: This study aimed to analyse the temporal and spatial variations in the trophic structures of fish assemblages in the Chishui River, the last undammed tributary of the upper Yangtze River. Fish samples were collected from different sections (the headwater, the upstream, the midstream and the downstream) along the longitudinal gradient during the flood season (June) and dry season (December) of 2023. Stable carbon and nitrogen isotope values (δ13C and δ15N) were measured for 2016 fish specimens, belonging to 3 orders, 13 families and 83species. Temporal and spatial variations were analyzed by using MixSIAR and SIBER. Results showed that the δ13C values of fish species ranged from -29.36‰ to -15.81‰, while δ15N values ranged from 6.27‰ to 16.66‰. The δ13C and δ15N values in the upstream and midstream were significantly higher in the flood season than that in the dry season (P<0.05), while those in the downstream showed non-significant seasonal differences. Along the longitudinal gradient, the δ13C and δ15N values increased gradually first and then decreased in the downstream, with the maximum values occurring in the midstream. Trophic levels of fish assemblages ranged from 1.21 to 4.46, with average trophic levels significantly higher in the flood season than those in the dry season (P<0.05). Fish assemblages in the midstream exhibited significantly higher average trophic levels than those in other sections (P<0.05). The analysis of trophic structure indicators revealed significant temporal and spatial differences in fish assemblages. Temporally, for most sections (except for the downstream), higher Nitrogen Range (NR), Total Area (TA), Mean Nearest Neighbor Distance (MNND), and Standard Deviation of Nearest Neighbor Distance (SDNND) were observed in the flood season, suggesting greater trophic niche differentiation and more complex food webs than that in the dry season. Spatially, NR, Carbon Range (CR), and TA increased gradually along the longitudinal gradient, suggesting greater trophic diversity and increasingly complex food web downstream. Significant differences were observed among different feeding guilds, with the piscivore fishes exhibited the highest trophic level. These findings provide critical insights into the ecosystem structure and function of the Chishui River and offer scientific guidance for fish biodiversity conservation and ecological restoration efforts.

     

/

返回文章
返回