洱海鱼类群落食谱组成及营养生态位特征: 来自特征脂肪酸研究的证据

DIET COMPOSITION AND TROPHIC NICHE OF FISH COMMUNITIES IN Erhai Lake: EVIDENCE FROM SIGNATURE FATTY ACID STUDIES

  • 摘要: 捕食是塑造鱼类群落的关键生态过程, 研究鱼类群落食谱组成和营养生态位特征, 是解析鱼类种间营养关系及共存机制、优化食物网结构与功能的基础和前提。研究以典型高原湖泊洱海为例, 采集了洱海鱼类及悬浮颗粒物、有机沉积物、浮游生物和底栖动物等样本, 应用特征脂肪酸定量分析(Quantitative Fatty Acid Signature Analysis, QFASA)等方法, 系统研究了洱海主要鱼类的食谱组成和营养生态位特征。结果表明, 䱗(Hemiculter leucisculus)、西太公鱼(Hypomesus nipponensis)和太湖新银鱼(Neosalanx taihuensis)等中上层鱼类的主要食物是浮游动物, 鲤(Cyprinus carpio)、杞麓鲤(Cyprinus carpio chilia)和波氏吻虾虎鱼(Rhinogobius cliffordpopei)等中下层鱼类的主要摄食对象是日本沼虾(Macrobrachium nipponense)、刻蚊蚬(Corbicula largillierti)和浮游动物。黄颡鱼(Pelteobagrus fulvidraco)食谱中的小型鱼类占比54.42%, 具有明显的鱼食性特征。洱海鱼类的营养生态位宽度(Standard Ellipse Area corrected, SEAc)为0.40—9.30, 其中鲫(Carassius auratus)(SEAc=9.30)、杞麓鲤(SEAc=7.31)和鲤(SEAc=6.43)的营养生态位宽度较大, 表明其对食物资源利用力较强; 太湖新银鱼(SEAc=1.00)、䱗(SEAc=0.58)和西太公鱼(SEAc=0.40)营养生态位宽度较窄, 食源相对专一。洱海鱼类的营养生态位重叠程度为0—77.3%, 其中黄颡鱼与杞麓鲤的营养生态位高度重叠(77.3%), 但QFASA提供的食谱组成揭示黄颡鱼通过摄食小型鱼类来避免直接竞争。但是, 䱗与鳙(Aristichthys nobilis)(72.5%)、鲫与杞麓鲤(50.2%)的营养生态位重叠较高, 栖息水层相同, 食谱组成相近, 种间竞争较为激烈。基于上述结果, 建议以浮游动物食性鱼类作为群落调控的首选对象, 同时关注杞麓鲤等土著鱼类资源的恢复。综上, 研究表明基于特征脂肪酸的食谱组成和营养生态位特征的综合分析是深入理解鱼类群落营养关系, 评估种间潜在竞争关系的有效方法, 为洱海土著鱼类资源保护、鱼类群落调控和食物网优化提供理论支持。

     

    Abstract: Predation is a fundamental ecological process that structures fish communities. Comprehension of diet composition and trophic niche characteristics is imperative for elucidating interspecific trophic relationships, coexistence mechanisms, and optimizing food web structure and function. In this study, a comprehensive set of samples was collected from Erhai Lake, encompassing fish, particulate organic matter (POM), sediment organic material (SOM), plankton, and benthic organisms. The methods such as Quantitative Fatty Acid Signature Analysis (QFASA) was employed to characterize diet composition and trophic niche structure of dominant fish community. QFASA results indicated that planktonic fishes (Hemiculter leucisculus, Neosalanx taihuensis, and Hypomesus nipponensis) primarily relied on zooplankton, whereas bottom-dwelling fish species (Cyprinus carpio, Cyprinus carpio chilia, and Rhinogobius cliffordpopei) consumed Macrobrachium nipponense, Corbicula largillierti, and zooplankton. It is noteworthy that Pelteobagrus fulvidraco demonstrated piscivorous tendencies, with small fish constituting 54.42% of its diet. Trophic niche breadth (Standard Ellipse Area corrected, SEAc) exhibited significant variation among species, ranging from 0.40 to 9.30. Specifically, Carassius auratus exhibited the highest SEAc value of 9.30, followed by C. chilia (SEAc=7.31) and C. carpio (SEAc=6.43), reflecting their capacity for generalized resource utilization. Conversely, N. taihuensis (SEAc=1.00), H. leucisculus (SEAc=0.58), and H. nipponensis (SEAc=0.40) exhibited constrained niche breadth, reflecting specialized trophic strategies. The extent of trophic niche overlap ranged from 0 to 77.3%. The highest overlap was observed between P. fulvidraco and C. chilia (77.3%), though QFASA revealed P. fulvidraco avoided direct competition through predation on small fish. High overlap also occurred between H. leucisculus and A. nobilis (72.5%), as well as C. auratus and C. chilia (50.2%), likely driving interspecific competition due to shared habitats and diets. These findings suggest that zooplanktivorous fish should be prioritized in community regulation, while emphasizing the conservation of population resources for indigenous species such as C. chilia. Integrating QFASA with trophic niche analysis effectively elucidates the trophic structure of fish community and reveals potential interspecific competition, providing theoretical insights for fish community regulation and food web optimization of Erhai Lake.

     

/

返回文章
返回