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Tab. 1 Morphological parameters of subadult S. macropogon in each group
Temperature (°C)
Parameters 5 10 15 18
No. of fish 5 7 5 6
Weight (g) 196.8+5.9 235.0+6.9 246.8£5.8 245.8+5.9
Body length (cm) 23.4£2.0 24.6+2.6 25.4+2.0 25.0+£2.3
Total length (cm) 27.9+1.9 29.1+2.7 30.5+1.7 29.7+2.1
Body wide (cm) 3.540.6 3.4+0.7 3.6£0.4 3.3+0.3
Body height (cm) 5.0£0.7 5.6£0.5 5.9+0.8 5.6£0.3
Condition factor* 0.906 0.953 0.870 0.938

*Condition factor =[weight(g)xtotal length™(cm)]x100!"!
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Tab. 2 Nonlinear regress model based on MO, and swimming
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() fish egression equation [10] ’
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SWIMMING CAPABILITY AND ACTIVITY METABOLISM OF SUBADULT
SCHIZOTHORAX MACROPOGON

TU Zhi-Ying, YUAN Xi, WANG Cong-Feng, XU Xiao-Rong, LIU De-Fu and HUANG Ying-Ping

(Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education,
China Three Gorges University, Yichang 443002, China)

Abstract: Schizothorax macropogon (locally known as Huzi Yu), a fish species commonly found in Yaluzangbujiang
River, has been declining quickly in recent years. Overfishing is one of the important factors. Hydropower projects that
will be built on the river will lead to more significant decline in this species. Building fish passage incorporated into
dams together with other fisheries management actions would help maintain local fish fisheries. The swimming capabil-
ity within specific habitats is likely to be very important data that might be applied to the design of a fishway for S.
macropogon. To obtain data that can be applied to the design of a fishway for S. macropogon and other species in the
community, a laboratory study on the swimming capability and activity metabolism of wild subadult S. macropogon was
conducted in a self-designed apparatus with a video camera system recording their swimming behavior at four acclima-
tion temperature (5, 10, 15 and 18°C) to reflect seasonal water temperature. Specimens of wild S. macropogon [body
length (BL) ranging from 20-29 cm, body mass ranging from 176-324 g] were selected and their critical swimming
speed (U.;), oxygen consumption rate [MO,, mgO,/(kg-h)], tail beat frequency (TBF, /min), and stride length (Ls, /beat)
were measured and compared during steady swimming at varying flow rates. Both absolute critical swimming speeds
(Uerit.a, m/s) and relative critical swimming speeds (U...., BL/s) of subadult S. macropogon increased with the tempera-
ture from 5°C to 18°C and the relation was approximately linearity (P<0.001). The U ., were 0.88+0.07, 1.09+0.07,
1.24+0.15, 1.49+0.15 m/s and U, were 3.96+0.21, 4.4+0.16, 4.9+0.18 and 5.35+0.14 BL/s respectively at four differ-
ent temperatures. The maximum U, did not appear during the temperature from 5°C to 18°C. Power function models at
four different temperatures well described the correlation between MO, and swimming speed with high correlation co-
efficient (P<0.05). The derived models showed that MO, increased with the increase of swimming speed and the in-
crease was more significant as the temperature was higher. The speed exponents of the power fit at four different tem-
peratures were 2.4, 2.6, 2.8 and 3.1, which means the efficiency of aerobic swimming decreased with the increase of
temperature and temperature had a significant effect on swimming performance in subadult S. macropogon. There was a
significant positive linear correlation between TBF and swimming speed (P<0.001) at natural water temperature (5-9°C)
which was in accord with most reference data, but stride length (Ls) was only weakly correlated with swimming speed
and showed three different stages. Recording analyses indicated that S. macropogon depended on caudal fin to generate
forward thrust and employed three velocity-dependent swimming modes during the increase of swimming speed: a dis-
continuous ‘stroke-and-glide’ swimming behavior at low velocity, a continuous swimming behavior as velocity increase
and a discontinuous ‘burst-and-glide’ swimming behavior at velocities near U.;. This has been shown to be an en-
ergy-saving swimming behavior and may benefit the fish by optimizing muscle fiber power output and efficiency. This
investigation provided data on the swimming capability and energetics of wild subadult S. macropogon that would add

to the basic science required for fishway design and contribute to the protection of this species.

Key words: Schizothorax macropogon; Swimming capability; Swimming behavior; Activity metabolism; Fishway



